Calculates a corrected life table from a mortAAR life table
Source:R/lifetable_corrected.R
lt.correction.Rd
It is generally assumed that most skeletal populations lack the youngest age group. Life tables resulting from such populations will necessarily be misleading as they lead to believe that the mortality of younger children was lower than it actually was and that life expectancy was higher. For correcting these missing individuals, Bocquet-Appel and Masset (1977; see also Herrmann et al. 1990, 307) conceived of several calculations based on regression analyses of modern comparable mortality data. However, the applicability of these indices to archaeological data is highly debated and does not necessarily lead to reliable results. Therefore, the correction needs to be weighted carefully and ideally only after the representativity of the base data has been checked with function lt.representativity.
Usage
lt.correction(life_table, agecor = TRUE, agecorfac = c(), option_spline = NULL)
Arguments
- life_table
an object of class mortaar_life_table.
- agecor
logical, optional. Passed to
life.table
.- agecorfac
numeric vector, optional. Passed to
life.table
.- option_spline
integer, optional. Passed to
life.table
.
Value
a list containing a data.frame with indices e0, 1q0 and 5q0 as well as mortality rate m and growth rate r according to Bocquet-Appel and Masset showing the computed exact value as well as ranges and an object of class mortaar_life_table with the corrected values.
e0: Corrected life expectancy.
1q0: Mortality of age group 0–1.
5q0: Mortality of age group 0–5.
Details
For the parameters see the documentation of life.table
.
Examples
# Calculate a corrected life table from real life dataset.
schleswig <- life.table(schleswig_ma[c("a", "Dx")])
lt.correction(schleswig)
#> $indices
#> method value range_start range_end
#> 1 e0 22.549 21.046 24.052
#> 2 1q0 0.290 0.274 0.306
#> 3 5q0 0.465 0.424 0.506
#>
#> $life_table_corr
#>
#> mortAAR life table (n = 368.1 individuals)
#>
#> Life expectancy at birth (e0): 21.129
#>
#> x a Ax Dx dx lx qx Lx Tx ex
#> 1 0--4 5 1.667 171.102 46.482 100.000 46.482 345.059 2112.914 21.129
#> 2 5--9 5 2.500 22.000 5.977 53.518 11.168 252.648 1767.854 33.033
#> 3 10--14 5 2.500 12.000 3.260 47.541 6.857 229.556 1515.207 31.871
#> 4 15--19 5 2.500 8.000 2.173 44.281 4.908 215.973 1285.650 29.034
#> 5 20--26 7 3.500 15.000 4.075 42.108 9.677 280.493 1069.677 25.403
#> 6 27--33 7 3.500 30.000 8.150 38.033 21.429 237.706 789.184 20.750
#> 7 34--40 7 3.500 12.000 3.260 29.883 10.909 197.771 551.478 18.455
#> 8 41--47 7 3.500 19.000 5.162 26.623 19.388 168.296 353.707 13.286
#> 9 48--54 7 3.500 36.000 9.780 21.461 45.570 116.001 185.411 8.639
#> 10 55--61 7 3.500 28.000 7.607 11.682 65.116 55.148 69.410 5.942
#> 11 62--68 7 3.500 15.000 4.075 4.075 100.000 14.262 14.262 3.500
#> rel_popx
#> 1 16.331
#> 2 11.957
#> 3 10.864
#> 4 10.222
#> 5 13.275
#> 6 11.250
#> 7 9.360
#> 8 7.965
#> 9 5.490
#> 10 2.610
#> 11 0.675
#>